On the Bonsall cone spectral radius and the approximate point spectrum
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00476010" target="_blank" >RIV/67985840:_____/17:00476010 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3934/dcds.2017232" target="_blank" >http://dx.doi.org/10.3934/dcds.2017232</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcds.2017232" target="_blank" >10.3934/dcds.2017232</a>
Alternative languages
Result language
angličtina
Original language name
On the Bonsall cone spectral radius and the approximate point spectrum
Original language description
We study the Bonsall cone spectral radius and the approximate point spectrum of (in general non-linear) positively homogeneous, bounded and supremum preserving maps, defined on a max-cone in a given normed vector lattice. We prove that the Bonsall cone spectral radius of such maps is always included in its approximate point spectrum. Moreover, the approximate point spectrum always contains a (possibly trivial) interval. Our results apply to a large class of (nonlinear) max-type operators. We also generalize a known result that the spectral radius of a positive (linear) operator on a Banach lattice is contained in the approximate point spectrum. Under additional generalized compactness type assumptions our results imply Krein-Rutman type results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-00941S" target="_blank" >GA17-00941S: Topological and geometrical properties of Banach spaces and operator algebras II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical Systems
ISSN
1078-0947
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
5337-5354
UT code for WoS article
000408557300014
EID of the result in the Scopus database
2-s2.0-85030532959