Power bounded operators and supercyclic vectors II
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F05%3A00030787" target="_blank" >RIV/67985840:_____/05:00030787 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Power bounded operators and supercyclic vectors II
Original language description
We show that each power bounded operator with spectral radius equal to one a reflexive Banach space has a nonzero vector which is not supercyclic. Equivalently, the operator has a nontrivial closed invariant homogeneous subset. Moreover, the operator hasa nontrivial closed invariant cone if 1 belongs to its spectrum. This generalizes the corresponding results for Hilbert space operators. For non-reflexive Banach spaces these results remain true; however, the non-supercyclic vector (inavariant cone, respectively) relates to the adjoint of the operator.
Czech name
Mocninově ohraničené operátory a supercyklické vektory II
Czech description
Každý mocninově ohraničený operátor v reflexivním Banachově prostoru, jehož spektrum obsahuje 1, má netriviální invariantní kužel.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F03%2F0041" target="_blank" >GA201/03/0041: Methods and function theory of Banach algebras in operator theory II.</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
133
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
2997-3004
UT code for WoS article
—
EID of the result in the Scopus database
—