All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Invariant subspaces for polynomially bounded operators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F04%3A00106841" target="_blank" >RIV/67985840:_____/04:00106841 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Invariant subspaces for polynomially bounded operators

  • Original language description

    Let T be a polynomially bounded operator on a Banach space X whose spectrum contains the unit circle. Then T* has a nontrivial invariant subspace. In particular, if X is reflexive, then T itself has a nontrivial invariant subspace. This generalizes the well-known result of Brown, Chevreau, and Pearcy for Hilbert space contractions.

  • Czech name

    Invariantní podprostory polynomiálně ohraničených operátorů

  • Czech description

    Nechť T je polynomiálně ohraničený operátor na Banachově prostoru X, jehož spektrum obsahuje jednotkovou kružnici. Pak T* má netriviální invariantní podprostor. To zobecňuje známý výsledek ( Brown, Chevreau, Pearcy ) pro kontrakce na Hilbertově prostoru.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F03%2F0041" target="_blank" >GA201/03/0041: Methods and function theory of Banach algebras in operator theory II.</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2004

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Functional Analysis

  • ISSN

    0022-1236

  • e-ISSN

  • Volume of the periodical

    213

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    321-345

  • UT code for WoS article

  • EID of the result in the Scopus database