Two reasons for the appearance of pushed wavefronts in the Belousov-Zhabotinsky system with spatiotemporal interaction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000135" target="_blank" >RIV/47813059:19610/23:A0000135 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022039623005478" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039623005478</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2023.08.013" target="_blank" >10.1016/j.jde.2023.08.013</a>
Alternative languages
Result language
angličtina
Original language name
Two reasons for the appearance of pushed wavefronts in the Belousov-Zhabotinsky system with spatiotemporal interaction
Original language description
We prove the existence of the minimal speed of propagation c(*)(r, b, K) is an element of [2 root 1 - r, 2] for wavefronts in the Belousov-Zhabotinsky system with a spatiotemporal interaction defined by the convolution with (possibly, "fat-tailed") kernel K. The model is assumed to be monostable non-degenerate, i.e. r is an element of (0, 1). The slowest wavefront is termed pushed or nonlinearly determined if its velocity c(*)(r, b, K) > 2 root/1 - r. We show that c(*)(r, b, K) is close to 2 if i) positive system's parameter b is sufficiently large or ii) K is spatially asymmetric to one side (e.g. to the left: in such a case, the influence of the right side concentration of the bromide ion on the dynamics is more significant than the influence of the left side). Consequently, this reveals two reasons for the appearance of pushed wavefronts in the Belousov-Zhabotinsky reaction
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
376
Issue of the periodical within the volume
december
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
102-125
UT code for WoS article
001076174800001
EID of the result in the Scopus database
2-s2.0-85169909215