All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Slowly oscillating wavefronts of the KPP-Fisher delayed equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F14%3A%230000451" target="_blank" >RIV/47813059:19610/14:#0000451 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9762" target="_blank" >http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9762</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3934/dcds.2014.34.3511" target="_blank" >10.3934/dcds.2014.34.3511</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Slowly oscillating wavefronts of the KPP-Fisher delayed equation

  • Original language description

    This paper concerns the semi-wavefronts (i.e. bounded solutions u = phi(x.v+ct) >0, |v| = 1, satisfying phi(-infinity) = 0) to the delayed KPP-Fisher equation u(t)(t, x) = x) u(t, x)(1-u(t -tau,x)), u >= 0, x is an element of R-m First, we show that theprofile phi of each semi-wavefront should be either monotone or eventually sine-like slowly oscillating around the positive equilibrium. Then a solution to the problem of existence of semi-wavefronts is provided. Next, we prove that the semi-wavefronts are in fact wavefronts (i.e. additionally phi(+infinity) = 1) if c >= 2 and tau <= 1; our proof uses dynamical properties of an auxiliary one-dimensional map with the negative Schwarzian. However, we also show that, for c >= 2 and tau >= 1.87, each semi-wavefront profile phi(t) should develop non-decaying oscillations around 1 as t ->+infinity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/EE2.3.20.0002" target="_blank" >EE2.3.20.0002: Development of Research Capacities of the Mathematical Institute in Opava</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete and Continuous Dynamical Systems

  • ISSN

    1078-0947

  • e-ISSN

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    3511-3533

  • UT code for WoS article

    000333556300012

  • EID of the result in the Scopus database