An extension of Wright's 3/2-theorem for the KPP-Fisher delayed equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F15%3A%230000499" target="_blank" >RIV/47813059:19610/15:#0000499 - isvavai.cz</a>
Result on the web
<a href="http://www.ams.org/journals/proc/2015-143-07/S0002-9939-2015-12496-3/" target="_blank" >http://www.ams.org/journals/proc/2015-143-07/S0002-9939-2015-12496-3/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/S0002-9939-2015-12496-3" target="_blank" >10.1090/S0002-9939-2015-12496-3</a>
Alternative languages
Result language
angličtina
Original language name
An extension of Wright's 3/2-theorem for the KPP-Fisher delayed equation
Original language description
We present a short proof of the following natural extension of Wright's famous 3/2-stability theorem: the conditions tau <= 3/2, c >= 2 imply the presence of the positive traveling fronts (not necessarily monotone) u = phi(x . nu + ct), vertical bar nu vertical bar = 1, in the delayed KPP-Fisher equation u(t)(t, x) = Delta u(t, x) + u(t, x)(1 - u(t - tau, x)), u >= 0, x is an element of R-m.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0002" target="_blank" >EE2.3.20.0002: Development of Research Capacities of the Mathematical Institute in Opava</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
143
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
3019-3027
UT code for WoS article
000357041300028
EID of the result in the Scopus database
2-s2.0-84927721186