Transitivity in nonautonomous systems generated by a uniformly convergent sequence of maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000162" target="_blank" >RIV/47813059:19610/24:A0000162 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0166864124000890" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0166864124000890</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2024.108904" target="_blank" >10.1016/j.topol.2024.108904</a>
Alternative languages
Result language
angličtina
Original language name
Transitivity in nonautonomous systems generated by a uniformly convergent sequence of maps
Original language description
Let (X, d) be a metric space and f1,infinity = {fn}infinity i=0 be a sequence of continuous maps fn : X -> X such that (fn) converges uniformly to a continuous map f. We investigate which conditions ensure that the transitivity of functions fn or the transitivity of the nonautonomous system (X, f1,infinity) is inherited to the limit function f and vice versa. Such problem has been studied for instance by A. Fedeli, A. Le Donne or J. Li who give different sufficient condition for inheriting of transitivity from fn to f. In this paper we give a survey of known result relating to this problem and prove new results concerning transitivity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and its Applications
ISSN
0166-8641
e-ISSN
1879-3207
Volume of the periodical
349
Issue of the periodical within the volume
may
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
„108904-1“-„108904-12“
UT code for WoS article
001230342200001
EID of the result in the Scopus database
2-s2.0-85190341446