Chaos in nonautonomous discrete dynamical systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F12%3A%230000352" target="_blank" >RIV/47813059:19610/12:#0000352 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S1007570412002663" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1007570412002663</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cnsns.2012.06.005" target="_blank" >10.1016/j.cnsns.2012.06.005</a>
Alternative languages
Result language
angličtina
Original language name
Chaos in nonautonomous discrete dynamical systems
Original language description
We consider nonautonomous discrete dynamical systems (I, f(1,infinity)) given by sequences {fn}(n >= 1) of surjective continuous maps fn : I -> I converging uniformly to a map f : I -> I. Recently it was proved, among others, that generally there is no connection between chaotic behavior of (I, f(1,infinity)) and chaotic behavior of the limit function f. We show that even the full Lebesgue measure of a distributionally scrambled set of the nonautonomous system does not guarantee the existence of distributional chaos of the limit map and conversely, that there is a nonautonomous system with arbitrarily small distributionally scrambled set that converges to a map distributionally chaotic a.e.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Nonlinear Science and Numerical Simulation
ISSN
1007-5704
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
12
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
4
Pages from-to
4649-4652
UT code for WoS article
000307104000017
EID of the result in the Scopus database
—