All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chaos in nonautonomous discrete dynamical systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F12%3A%230000352" target="_blank" >RIV/47813059:19610/12:#0000352 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S1007570412002663" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1007570412002663</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cnsns.2012.06.005" target="_blank" >10.1016/j.cnsns.2012.06.005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chaos in nonautonomous discrete dynamical systems

  • Original language description

    We consider nonautonomous discrete dynamical systems (I, f(1,infinity)) given by sequences {fn}(n >= 1) of surjective continuous maps fn : I -> I converging uniformly to a map f : I -> I. Recently it was proved, among others, that generally there is no connection between chaotic behavior of (I, f(1,infinity)) and chaotic behavior of the limit function f. We show that even the full Lebesgue measure of a distributionally scrambled set of the nonautonomous system does not guarantee the existence of distributional chaos of the limit map and conversely, that there is a nonautonomous system with arbitrarily small distributionally scrambled set that converges to a map distributionally chaotic a.e.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Nonlinear Science and Numerical Simulation

  • ISSN

    1007-5704

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    4

  • Pages from-to

    4649-4652

  • UT code for WoS article

    000307104000017

  • EID of the result in the Scopus database