Distributionally scrambled invariant sets in a compact metric space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F13%3A%230000366" target="_blank" >RIV/47813059:19610/13:#0000366 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0362546X12004312" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0362546X12004312</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2012.11.005" target="_blank" >10.1016/j.na.2012.11.005</a>
Alternative languages
Result language
angličtina
Original language name
Distributionally scrambled invariant sets in a compact metric space
Original language description
The paper solves a question posed by Oprocha on the existence of invariant distributionally chaotic scrambled sets. We show, among other things, that a continuous map f acting on compact metric space (X, d) with a weak specification property, fixed point, and infinitely many mutually distinct periods has a dense Mycielski (i.e., c dense set of type F-sigma.) invariant distributionally scrambled set. As a consequence, we describe a class of maps with a distributionally scrambled invariant set of full Lebesgue measure in the case when X is a k-dimensional cube.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
79
Issue of the periodical within the volume
March 2013
Country of publishing house
GB - UNITED KINGDOM
Number of pages
5
Pages from-to
80-84
UT code for WoS article
000313933400007
EID of the result in the Scopus database
—