All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F16%3A%230000512" target="_blank" >RIV/47813059:19610/16:#0000512 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=12130" target="_blank" >http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=12130</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3934/dcds.2016.36.3435" target="_blank" >10.3934/dcds.2016.36.3435</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval

  • Original language description

    We consider nonautonomous discrete dynamical systems {f(n)}(n >= 1), where every f(n) is a surjective continuous map [0, 1] -> [0, 1] such that f(n) converges uniformly to a map f. It is well-known that f has positive topological entropy iff {f(n)}(n >=1), has. On the other hand, for systems with zero topological entropy, {f(n)}(n >= 1), with very complex dynamics can converge even to the identity map. We study the following question: Which properties of the limit function f are inherited by nonautonomous system {f(n)}(n >= 1)? We show that Li-Yorke chaos, distributional chaos DC1 and, for zero entropy maps, infinite omega-limit sets are inherited by nonautonomous systems and, for zero entropy maps, we give a criterion on f under which {f(n)}(n >= 1)is DC1. More precisely, our main results are: (i) If f is Li-Yorke chaotic then {f(n)}(n >= 1) is Li-Yorke chaotic as well, and the analogous implication is true for distributional chaos DC1; (ii) If f has zero topological entropy then th

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F10%2F0887" target="_blank" >GAP201/10/0887: Discrete dynamical systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete and Continuous Dynamical Systems - Series A

  • ISSN

    1078-0947

  • e-ISSN

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    3435-3443

  • UT code for WoS article

    000371998300020

  • EID of the result in the Scopus database

    2-s2.0-84954286229