On Generic Properties of Nonautonomous Dynamical Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F18%3AA0000023" target="_blank" >RIV/47813059:19610/18:A0000023 - isvavai.cz</a>
Result on the web
<a href="https://www.worldscientific.com/doi/abs/10.1142/S021812741850102X" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S021812741850102X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S021812741850102X" target="_blank" >10.1142/S021812741850102X</a>
Alternative languages
Result language
angličtina
Original language name
On Generic Properties of Nonautonomous Dynamical Systems
Original language description
We consider nonautonomous dynamical systems consisting of sequences of continuous surjective maps of a compact metric space X . Let F-0, F-e and F-p, denote the space of systems F = (f(n))(n >= 1), which are uniformly convergent, or equicontinuous, or pointwise convergent (to a continuous map), respectively. We show that for X = I := [0, 1], the generic system in any of the spaces has infinite topological entropy, while, if X is the Cantor set, the generic system in any of the spaces has zero topological entropy. This shows, among others, that the general results of the above type for arbitrary compact space X are difficult if not impossible.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
ISSN
0218-1274
e-ISSN
1793-6551
Volume of the periodical
28
Issue of the periodical within the volume
8
Country of publishing house
SG - SINGAPORE
Number of pages
7
Pages from-to
„1850102-1“-„1850102-7“
UT code for WoS article
000441056400013
EID of the result in the Scopus database
2-s2.0-85051366629