Dynamical systems generated by functions with connected $G_delta$ graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F05%3A%230000033" target="_blank" >RIV/47813059:19610/05:#0000033 - isvavai.cz</a>
Alternative codes found
RIV/47813059:19610/06:#0000092
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Dynamical systems generated by functions with connected $G_delta$ graphs
Original language description
In 2001, Cs" ornyei, O'Neil and Preiss proved that the composition of any two Darboux Baire-1 functions $[0,1]rightarrow[0,1]$ possesses a fixed point, solving a long-standing open problem. In 2004 Szuca proved that this result can be generalized to any $f$ in the class $mathcal J$ of functions $[0,1]rightarrow [0,1]$ with connected $G_delta$ graph. As a consequence, he proved that for such functions the Sharkovsky theorem is satisfied. As the main result of this paper we prove that similarly as for the continuous maps of the interval, any $f$ in $mathcal J$ has positive topological entropy if and only if it has a periodic point of period different from $2^n$, for any $ninmathbb N$. To do this we show that using the Bowen's approach it is possible to define topological entropy for discontinuous maps of a compact metric space with almost all standard properties. In particular, the variational principle is true, and consequently, topological e ntropy is supported by the set of re
Czech name
Dynamické systémy generované funkcemi se souvislěm $G_delta$ grafem
Czech description
Mějme libovolné dvě funkce z intervalu $[0,1]$ do intervalu $[0,1]$ s Darbouxovou vlastností ze třídy Baire-1. V roce 2001, Cs" ornyei, O'Neil a Preiss dokázali, že složením těchto dvou funkcí vznikne zobrazení, které má pevný bod. Tuto vlastnost zobecnil v roce 2004 P. Szuca pro zobrazení ze třídy $mathcal J$ funkcí na intervalu za souvislým $G_delta$ grafem. Následkem toho ukázal, že takovéto funkce splňují Sharkovského větu. V tomto článku je ukázáno, že podobně jako pro spojité funkce na intervalu, funkce $f$ ze třídy $mathcal J$ má pozitivní topologickou entropii tehdy a jen tehdy, jestliže $f$ má periodický bod periody různé od mocniny $2$. Pomocí Bowenovy definice topologické entropie je možné tento pojem definovat i pro nespojité funkce nakompaktním metrickém prostoru s téměř všemi standardními vlastnostmi. Zejména, že topologická entropie funkce $f$ je dána množinou rekurent ních bodů.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F03%2F1153" target="_blank" >GA201/03/1153: Dynamical systems II.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Real Analysis Exchange
ISSN
0147-1937
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
617-637
UT code for WoS article
—
EID of the result in the Scopus database
—