Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000166" target="_blank" >RIV/47813059:19610/24:A0000166 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S1007570424001011" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1007570424001011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cnsns.2024.107915" target="_blank" >10.1016/j.cnsns.2024.107915</a>
Alternative languages
Result language
angličtina
Original language name
Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation
Original language description
Applying an original megaideal-based version of the algebraic method, we compute the pointsymmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the computation. The analogous studies are also carried out for the corresponding nonlinear Lax representation and the dispersionless counterpart of the symmetric Nizhnik system. We also first apply the megaideal-based version of the algebraic method to find the contact-symmetry (pseudo)group of a partial differential equation. It is shown that the contact-symmetry pseudogroup of the dispersionless Nizhnik equation coincides with the first prolongation of its point-symmetry pseudogroup. We check whether the subalgebras of the maximal Lie invariance algebra of the dispersionless Nizhnik equation that naturally arise in the course of the above computations define the diffeomorphisms stabilizing this algebra or its first prolongation. In addition, we construct all the third-order partial differential equations in three independent variables that admit the same Lie invariance algebra. We also find a set of geometric properties of the dispersionless Nizhnik equation that exhaustively defines it.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Nonlinear Science and Numerical Simulation
ISSN
1007-5704
e-ISSN
1878-7274
Volume of the periodical
132
Issue of the periodical within the volume
May
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
19
Pages from-to
„107915-1“-„107915-19“
UT code for WoS article
001198218800001
EID of the result in the Scopus database
2-s2.0-85185836496