Accretion disc backflow in resistive MHD simulations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F23%3AA0000262" target="_blank" >RIV/47813059:19630/23:A0000262 - isvavai.cz</a>
Result on the web
<a href="https://academic.oup.com/mnras/article/523/3/4708/7192460?login=true" target="_blank" >https://academic.oup.com/mnras/article/523/3/4708/7192460?login=true</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/mnras/stad1691" target="_blank" >10.1093/mnras/stad1691</a>
Alternative languages
Result language
angličtina
Original language name
Accretion disc backflow in resistive MHD simulations
Original language description
We investigate accretion onto a central star, with the size, rotation rate, and magnetic dipole of a young stellar object, to study the flow pattern (velocity and density) of the fluid within and outside of the disc. We perform resistive magnetohydrodynamic (MHD) simulations of thin discs, varying the parameters such as the stellar rotation rate and (anomalous) coefficients of viscosity and resistivity in the disc. To provide a benchmark for the results and to compare them with known analytic results, we also perform purely hydrodynamic (HD) simulations for the same problem. Although obtained for different situations with differing inner boundary condition, the disc structure in the HD simulations closely follows the analytic solution of Kluzniak and Kita - in particular, a region of 'mid-plane' backflow exists in the right range of radii, depending on the viscosity parameter. In the MHD solutions, whenever the magnetic Prandtl number does not exceed a certain critical value, the mid-plane backflow exists throughout the accretion disc, extending all the way down to the foot point of the accretion funnel flow where the disc transitions to a magnetic funnel flow. For values of the magnetic Prandtl number close to the critical value the backflow and the inner disc undergo a quasi-periodic radial oscillation, otherwise the backflow is steady, as is the disc solution. From our results, supplemented by our reading of the literature, we suggest that mid-plane backflow is a real, physical, and not only numerical feature of at least some accretion discs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/GX21-06825X" target="_blank" >GX21-06825X: Accreting Black Holes in the new era of X-ray polarimetry missions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monthly Notices of the Royal Astronomical Society
ISSN
0035-8711
e-ISSN
—
Volume of the periodical
523
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
4708-4719
UT code for WoS article
001019516400005
EID of the result in the Scopus database
2-s2.0-85163835350