All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parallel Estimation Respecting Constraints of Parametric Models of Cold Rolling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F48361143%3A_____%2F10%3A%230000002" target="_blank" >RIV/48361143:_____/10:#0000002 - isvavai.cz</a>

  • Result on the web

    <a href="http://library.utia.cas.cz/separaty/2010/AS/karny-parallel%20estimation%20respecting%20constraints%20of%20parametric%20models%20of%20cold%20rolling.pdf" target="_blank" >http://library.utia.cas.cz/separaty/2010/AS/karny-parallel%20estimation%20respecting%20constraints%20of%20parametric%20models%20of%20cold%20rolling.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3182/20100802-3-ZA-2014.00007" target="_blank" >10.3182/20100802-3-ZA-2014.00007</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parallel Estimation Respecting Constraints of Parametric Models of Cold Rolling

  • Original language description

    Model-based predictors and controllers frequently depend on efficient recursive estimation of model parameters. Similarly often, there are known hard bounds on parameter values. Adaptive control applied for rolling mills represents a typical example of such case. While common estimation algorithms are elaborated enough to be utilized in industrial practice, it is difficult to find implementation of bounded estimation, which is both formally consistent and suitable for reliable applications. Solution offered in this paper is based on simultaneous run of two or more proven estimators different in applied process models. Both simulated and real data examples are provided.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/7D09008" target="_blank" >7D09008: Probabilistic Bayesian soft sensor - a tool for on-line estimation of the key process variable in cold rolling mills</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    13th IFAC Symposium on Automation in Mineral, Mining and Metal Processing

  • ISBN

    978-3-902661-73-9

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    31-36

  • Publisher name

    University of Stellenbosch, South Africa

  • Place of publication

    Cape Town, South Africa

  • Event location

    Cape Town, South Africa

  • Event date

    Jan 1, 2010

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article