All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High ductility of bainite-based microstructure of middle carbon steel 42SiMn

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F17%3A43931579" target="_blank" >RIV/49777513:23210/17:43931579 - isvavai.cz</a>

  • Result on the web

    <a href="http://iopscience.iop.org/article/10.1088/1757-899X/179/1/012044/pdf" target="_blank" >http://iopscience.iop.org/article/10.1088/1757-899X/179/1/012044/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1757-899X/179/1/012044" target="_blank" >10.1088/1757-899X/179/1/012044</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High ductility of bainite-based microstructure of middle carbon steel 42SiMn

  • Original language description

    Heat and thermo-mechanical treatments with various processing parameters were applied to middle carbon low alloyed 42SiMn steel. The aim of the treatment was to obtain multiphase microstructure typical for TRIP (Transformation induced plasticity) steel and to achieve the best combination of ultimate tensile strength and ductility. TRIP steels typically possess about 5-15% of metastable retained austenite, which can transform to martensite during plastic deformation. The gradual phase transformation during loading postpones the onset of necking, thus increasing ultimate tensile strength and ductility at the same time. Manganese and silicon, used as the main alloying elements of the experimental steel, are employed to increase austenite stability and to hinder cementite precipitation during the treatment. All proposed methods of heat and thermo-mechanical treatment contain bainitic hold at 400 °C or 425 °C. The final microstructures were very complex, consisting of bainite, ferrite, very small areas of extremely fine perlite lamellas, about 10% of retained austenite and M-A constituent (austenitic islands partially transformed to martensite). Even though pearlite and martensite are undesirable microstructure in TRIP steel, the tensile strength ranged from 850 to 1065 MPa and ductility A5mm from 26 to 47 %.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/LO1502" target="_blank" >LO1502: Development of Regional Technological Institute</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IOP Conference Series-Materials Science and Engineering

  • ISBN

  • ISSN

    1757-8981

  • e-ISSN

    neuvedeno

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    IOP PUBLISHING LTD

  • Place of publication

    Bristol

  • Event location

    Pilsen

  • Event date

    Nov 9, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000403407100044