Arbitrary-level hanging nodes for adaptive hp-FEM approximations in 3D
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F14%3A43922242" target="_blank" >RIV/49777513:23220/14:43922242 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.cam.2014.02.010" target="_blank" >http://dx.doi.org/10.1016/j.cam.2014.02.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2014.02.010" target="_blank" >10.1016/j.cam.2014.02.010</a>
Alternative languages
Result language
angličtina
Original language name
Arbitrary-level hanging nodes for adaptive hp-FEM approximations in 3D
Original language description
In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifiesthe design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
—
Volume of the periodical
270
Issue of the periodical within the volume
November 2014
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
"121?133"
UT code for WoS article
—
EID of the result in the Scopus database
—