Adaptive hp-FEM with Arbitrary-Level Hanging Nodes for Maxwell's Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00174443" target="_blank" >RIV/68407700:21230/10:00174443 - isvavai.cz</a>
Alternative codes found
RIV/61388998:_____/10:00347677
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Adaptive hp-FEM with Arbitrary-Level Hanging Nodes for Maxwell's Equations
Original language description
Adaptive higher-order finite element methods (hp-FEM) are well known for their potential of exceptionally fast (exponential) convergence. However, most hp-FEM codes remain in an academic setting due to an extreme algorithmic complexity of hp-adaptivity algorithms. This paper aims at simplifying hp-adaptivity for H(curl)-conforming approximations by presenting a novel technique of arbitrary-level hanging nodes. The technique is described and it is demonstrated numerically that it makes adaptive hp-FEM more efficient compared to hp-FEM on regular meshes and meshes with one-level hanging nodes.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JE - Non-nuclear power engineering, energy consumption and utilization
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Mathematics and Mechanics
ISSN
2070-0733
e-ISSN
—
Volume of the periodical
2
Issue of the periodical within the volume
4
Country of publishing house
CN - CHINA
Number of pages
15
Pages from-to
—
UT code for WoS article
000286402400007
EID of the result in the Scopus database
—