All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Identification of thermal model of power module using expectation-maximization algorithm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F19%3A43956142" target="_blank" >RIV/49777513:23220/19:43956142 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8927553" target="_blank" >https://ieeexplore.ieee.org/document/8927553</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IECON.2019.8927553" target="_blank" >10.1109/IECON.2019.8927553</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Identification of thermal model of power module using expectation-maximization algorithm

  • Original language description

    Prediction of junction temperatures in power semiconductor modules is essential to improve reliability of the device and prevent module failures due to thermal stress. Lumped parameter network is a popular approach for temperature modeling. Calibration of the thermal model is based on thermal measurements of the junction temperatures that are difficult to obtain. We aim to combine the knowledge of internal model structure and as little measurements as possible. Specifically, we use a state space thermal model with structure determined by the module layout, and propose to use the Expectation-Maximization algorithm from that can utilize data from different incomplete experiments. The identification procedure is introduced in detail in this paper and the applicability of the proposed approach is demonstrated on simulated and experimental data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Electrical Engineering Technologies with High-Level of Embedded Intelligence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings : IECON 2019 : 45th Annual Conference of the IEEE Industrial Electronics Society

  • ISBN

    978-1-72814-878-6

  • ISSN

  • e-ISSN

    2577-1647

  • Number of pages

    7

  • Pages from-to

    1-7

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Lisabon, Portugal

  • Event date

    Oct 14, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article