Size reduction and performance improvement of a microstrip Wilkinson power divider using a hybrid design technique
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F21%3A43961958" target="_blank" >RIV/49777513:23220/21:43961958 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41598-021-87477-4" target="_blank" >https://www.nature.com/articles/s41598-021-87477-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-021-87477-4" target="_blank" >10.1038/s41598-021-87477-4</a>
Alternative languages
Result language
angličtina
Original language name
Size reduction and performance improvement of a microstrip Wilkinson power divider using a hybrid design technique
Original language description
In the design of a microstrip power divider, there are some important factors, including harmonic suppression, insertion loss, and size reduction, which affect the quality of the final product. Thus improving each of these factors contributes to a more efficient design. In this respect, a hybrid technique to reduce the size and improve the performance of a Wilkinson power divider (WPD) is introduced in this paper. The proposed method includes a typical series LC circuit, a miniaturizing inductor, and two transmission lines, which make an LC branch. Accordingly, two quarter-wavelength branches of the conventional WPD are replaced by two proposed LC branches. Not only does this modification lead to a 100% size reduction, an infinite number of harmonics suppression, and highfrequency selectivity theoretically, but it also results in a noticeable performance improvement practically compared to using quarter-wavelength branches in the conventional microstrip power dividers. The main important contributions of this technique are extreme size reduction and harmonic suppression for the implementation of a filtering power divider (FPD). Furthermore, by tuning the LC circuit, the arbitrary numbers of unwanted harmonics are blocked while the operating frequency, the stopband bandwidth, and the operating bandwidth are chosen optionally. The experimental result verifies the theoretical and simulated results of the proposed technique and demonstrates its potential for improving the performance and reducing the size of other similar microstrip components.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Electrical Engineering Technologies with High-Level of Embedded Intelligence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
1-15
UT code for WoS article
000639562100093
EID of the result in the Scopus database
2-s2.0-85104056947