All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Identification of Thermal Model Parameters Using Deep Learning Techniques

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F22%3A43965479" target="_blank" >RIV/49777513:23220/22:43965479 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9831641" target="_blank" >https://ieeexplore.ieee.org/document/9831641</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISIE51582.2022.9831641" target="_blank" >10.1109/ISIE51582.2022.9831641</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Identification of Thermal Model Parameters Using Deep Learning Techniques

  • Original language description

    Identification of thermal model parameters using multi-step prediction is proposed. Even in the case of a linear model, the multi-step prediction is a non-linear complex function, hence we use techniques of deep learning for its identification. Specifically, we use stochastic gradient descent optimization with importance sampling of mini-batches. The importance function is designed to match the character of thermal experiments in which the step change is less frequent than steady-state operation. The proposed method is demonstrated on the identification of an IGBT module SK 20 DGDL 065 ET. The maximum error of the model identified by the multi-step approach is almost two times smaller than that of the model identified by the least squares.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Electrical Engineering Technologies with High-Level of Embedded Intelligence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2022 IEEE 31st International Symposium on Industrial Electronics (ISIE) : /proceedings/

  • ISBN

    978-1-66548-240-0

  • ISSN

    2163-5145

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    978-981

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Anchorage, Alaska, USA

  • Event date

    Jun 1, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000946662000151