Paper geometry in nine acts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23330%2F11%3A43897215" target="_blank" >RIV/49777513:23330/11:43897215 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
Papírová geometrie v devíti jednáních
Original language description
1. Co lze skládáním papíru získat? Pokud se vezme nestandardní skládání, pak dokonce trisekce úhlu. 2. Standardní papírové skládání je ekvivalentní geometrii, ve které můžeme spojit dva dané body přímkou a posouvat jí. 3. Takováto geometrie má model, který splňuje všechny Hilbertovy axiomy až na axiom úplnosti. 4. Co lze zkonstruovat v takovéto geometrii? Pouze totální reálná čísla (jak odpovídá Hilbert). 5. Jak je lze zkonstruovat: to je to, co chtěl Hilbert poznat, ale nepovedlo se mu to, takže formulovat známý 17. problém. 6. Tento problém po téměř třiceti letech vyřešili E. Artin a O. Schreier (k tomu vytvořil krásnou teorii reálných polí). 7. Bohužel toto řešení není konstruktivní; po skoro třiceti letech Abraham Robinson a Georg Kreisel našli konstrukční řešení. 8. Bohužel odpovídající algoritmus má exp exp složitost, takže je ve skutečnosti nepoužitelný. 9. Takže závěrečná otázka je: kdy můžeme doopravdy (a nejen konvencemi) říci, že matematický problém byl definitivně vyřešen?
Czech name
Papírová geometrie v devíti jednáních
Czech description
1. Co lze skládáním papíru získat? Pokud se vezme nestandardní skládání, pak dokonce trisekce úhlu. 2. Standardní papírové skládání je ekvivalentní geometrii, ve které můžeme spojit dva dané body přímkou a posouvat jí. 3. Takováto geometrie má model, který splňuje všechny Hilbertovy axiomy až na axiom úplnosti. 4. Co lze zkonstruovat v takovéto geometrii? Pouze totální reálná čísla (jak odpovídá Hilbert). 5. Jak je lze zkonstruovat: to je to, co chtěl Hilbert poznat, ale nepovedlo se mu to, takže formulovat známý 17. problém. 6. Tento problém po téměř třiceti letech vyřešili E. Artin a O. Schreier (k tomu vytvořil krásnou teorii reálných polí). 7. Bohužel toto řešení není konstruktivní; po skoro třiceti letech Abraham Robinson a Georg Kreisel našli konstrukční řešení. 8. Bohužel odpovídající algoritmus má exp exp složitost, takže je ve skutečnosti nepoužitelný. 9. Takže závěrečná otázka je: kdy můžeme doopravdy (a nejen konvencemi) říci, že matematický problém byl definitivně vyřešen?
Classification
Type
D - Article in proceedings
CEP classification
AA - Philosophy and religion
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP401%2F10%2F0690" target="_blank" >GAP401/10/0690: Sources of the European Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
32. mezinárodní konference Historie matematiky
ISBN
978-80-7378-172-9
ISSN
—
e-ISSN
—
Number of pages
22
Pages from-to
11-32
Publisher name
MATFYZPRESS
Place of publication
Praha
Event location
Jevíčko
Event date
Aug 26, 2011
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—