All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Paper geometry in nine acts

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23330%2F11%3A43897215" target="_blank" >RIV/49777513:23330/11:43897215 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    Papírová geometrie v devíti jednáních

  • Original language description

    1. Co lze skládáním papíru získat? Pokud se vezme nestandardní skládání, pak dokonce trisekce úhlu. 2. Standardní papírové skládání je ekvivalentní geometrii, ve které můžeme spojit dva dané body přímkou a posouvat jí. 3. Takováto geometrie má model, který splňuje všechny Hilbertovy axiomy až na axiom úplnosti. 4. Co lze zkonstruovat v takovéto geometrii? Pouze totální reálná čísla (jak odpovídá Hilbert). 5. Jak je lze zkonstruovat: to je to, co chtěl Hilbert poznat, ale nepovedlo se mu to, takže formulovat známý 17. problém. 6. Tento problém po téměř třiceti letech vyřešili E. Artin a O. Schreier (k tomu vytvořil krásnou teorii reálných polí). 7. Bohužel toto řešení není konstruktivní; po skoro třiceti letech Abraham Robinson a Georg Kreisel našli konstrukční řešení. 8. Bohužel odpovídající algoritmus má exp exp složitost, takže je ve skutečnosti nepoužitelný. 9. Takže závěrečná otázka je: kdy můžeme doopravdy (a nejen konvencemi) říci, že matematický problém byl definitivně vyřešen?

  • Czech name

    Papírová geometrie v devíti jednáních

  • Czech description

    1. Co lze skládáním papíru získat? Pokud se vezme nestandardní skládání, pak dokonce trisekce úhlu. 2. Standardní papírové skládání je ekvivalentní geometrii, ve které můžeme spojit dva dané body přímkou a posouvat jí. 3. Takováto geometrie má model, který splňuje všechny Hilbertovy axiomy až na axiom úplnosti. 4. Co lze zkonstruovat v takovéto geometrii? Pouze totální reálná čísla (jak odpovídá Hilbert). 5. Jak je lze zkonstruovat: to je to, co chtěl Hilbert poznat, ale nepovedlo se mu to, takže formulovat známý 17. problém. 6. Tento problém po téměř třiceti letech vyřešili E. Artin a O. Schreier (k tomu vytvořil krásnou teorii reálných polí). 7. Bohužel toto řešení není konstruktivní; po skoro třiceti letech Abraham Robinson a Georg Kreisel našli konstrukční řešení. 8. Bohužel odpovídající algoritmus má exp exp složitost, takže je ve skutečnosti nepoužitelný. 9. Takže závěrečná otázka je: kdy můžeme doopravdy (a nejen konvencemi) říci, že matematický problém byl definitivně vyřešen?

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    AA - Philosophy and religion

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP401%2F10%2F0690" target="_blank" >GAP401/10/0690: Sources of the European Mathematics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    32. mezinárodní konference Historie matematiky

  • ISBN

    978-80-7378-172-9

  • ISSN

  • e-ISSN

  • Number of pages

    22

  • Pages from-to

    11-32

  • Publisher name

    MATFYZPRESS

  • Place of publication

    Praha

  • Event location

    Jevíčko

  • Event date

    Aug 26, 2011

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article