All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hilbert’s arithmetisation of geometry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23330%2F18%3A43955149" target="_blank" >RIV/49777513:23330/18:43955149 - isvavai.cz</a>

  • Result on the web

    <a href="https://filosofiednes.ff.uhk.cz/index.php/hen/article/view/269/226" target="_blank" >https://filosofiednes.ff.uhk.cz/index.php/hen/article/view/269/226</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    Hilbertova aritmetizace geometrie

  • Original language description

    Tato práce se podrobně věnuje způsobu, jakým David Hilbert (1862–1943) pojal aritmetizaci geometrie v knize Grundlagen der Geometrie z roku 1899. Nejprve stručně představíme Hilbertovy předchůdce z téže doby konce 19. století, kteří buď volali po změnách v založení geometrie, nebo je již sami zapracovali prostřednictvím axiomaticko-deduktivní metody. Přitom zároveň zmíníme relevantní Hilbertovy přednášky z oboru geometrie, které jeho dílu předcházely. Následně se pokusíme nastínit obsah prvních dvou kapitol knihy a vysvětlit dobové i věcné souvislosti, nutné k jejich pochopení. Představíme způsob implicitních definic základních pojmů a vztahů v axiomech a dále Hilbertovo rozdělení axiomů do skupin, přičemž se zejména zaměříme na axiomy spojitosti v kontextu s problematikou bezespornosti geometrie. K tomu popíšeme konstrukci aritmetického modelu axiomů geometrie, který Hilbert pro důkaz bezespornosti používá. V závěru se pokusíme nastínit Hilbertovy hlavní důvody k napsání díla a některé klíčové důsledky jeho pojetí axiomatiky geometrie.

  • Czech name

    Hilbertova aritmetizace geometrie

  • Czech description

    Tato práce se podrobně věnuje způsobu, jakým David Hilbert (1862–1943) pojal aritmetizaci geometrie v knize Grundlagen der Geometrie z roku 1899. Nejprve stručně představíme Hilbertovy předchůdce z téže doby konce 19. století, kteří buď volali po změnách v založení geometrie, nebo je již sami zapracovali prostřednictvím axiomaticko-deduktivní metody. Přitom zároveň zmíníme relevantní Hilbertovy přednášky z oboru geometrie, které jeho dílu předcházely. Následně se pokusíme nastínit obsah prvních dvou kapitol knihy a vysvětlit dobové i věcné souvislosti, nutné k jejich pochopení. Představíme způsob implicitních definic základních pojmů a vztahů v axiomech a dále Hilbertovo rozdělení axiomů do skupin, přičemž se zejména zaměříme na axiomy spojitosti v kontextu s problematikou bezespornosti geometrie. K tomu popíšeme konstrukci aritmetického modelu axiomů geometrie, který Hilbert pro důkaz bezespornosti používá. V závěru se pokusíme nastínit Hilbertovy hlavní důvody k napsání díla a některé klíčové důsledky jeho pojetí axiomatiky geometrie.

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    60301 - Philosophy, History and Philosophy of science and technology

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Filosofie dnes

  • ISSN

    1804-0969

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    19

  • Pages from-to

    45-63

  • UT code for WoS article

  • EID of the result in the Scopus database