Removal of GenX by APTES functionalized diepoxyoctane cross-linked chitosan beads
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23420%2F23%3A43969010" target="_blank" >RIV/49777513:23420/23:43969010 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2213343723012782" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2213343723012782</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jece.2023.110539" target="_blank" >10.1016/j.jece.2023.110539</a>
Alternative languages
Result language
angličtina
Original language name
Removal of GenX by APTES functionalized diepoxyoctane cross-linked chitosan beads
Original language description
Perfluoro-2-propoxypropanoic acid ammonium salt, commonly known as GenX, is a persistent, bioaccumulative, and toxic synthetic organofluorine compound utilized in producing various products. It has become a concern due to its extensive presence in the aquatic environment and its resistance to conventional water treatment methods. This study achieved effective adsorption of GenX by employing chitosan (CS) modified adsorbent. Cross-linked and aminated CS beads were synthesized using 1,2:7,8-diepoxyoctane (DEO) and 3-aminopropyl triethoxysilane (APTES). The prepared CS-DEO-APTES adsorbent exhibited an adsorption capacity of 825.9 mg/g, which was 2.26 times higher than that of CS beads (364.6 mg/g), attributed to its higher content of amino groups. Additionally, the CS-DEO-APTES adsorbent demonstrated excellent stability under acidic conditions (optimal pH= 4) due to the cross-linking process. Kinetic data, following a pseudo-second-order rate and isothermal data, fitting well with the Langmuir model, indicated that the interactions between GenX and CS-DEO-APTES were chemisorptive, with a nearly uniform distribution of adsorption sites. GenX-saturated beads were successfully regenerated for at least 6 cycles using a 1 % w/v aqueous NaCl and methanol solution (30:70 % v/v). Density functional theory (DFT) calculations suggested that electrostatic interactions primarily influence the adsorption of GenX. These results highlight the effectiveness of the CS-DEO-APTES adsorbent as a viable option for removing GenX from aqueous solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20402 - Chemical process engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Environmental Chemical Engineering
ISSN
2213-2929
e-ISSN
2213-3437
Volume of the periodical
11
Issue of the periodical within the volume
5
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
—
UT code for WoS article
001041180200001
EID of the result in the Scopus database
2-s2.0-85164213467