All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Removal of phosphate from wastewater using zirconium/iron embedded chitosan/alginate hydrogel beads: An experimental and computational perspective

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973151" target="_blank" >RIV/49777513:23520/24:43973151 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.ijbiomac.2024.136431" target="_blank" >https://doi.org/10.1016/j.ijbiomac.2024.136431</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijbiomac.2024.136431" target="_blank" >10.1016/j.ijbiomac.2024.136431</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Removal of phosphate from wastewater using zirconium/iron embedded chitosan/alginate hydrogel beads: An experimental and computational perspective

  • Original language description

    Adsorptive removal of phosphate plays a crucial role in mitigating eutrophication. Herein, the Zr/Fe embedded chitosan/alginate hydrogel bead (Zr/Fe/CS/Alg) is reported as an effective phosphate adsorbent. This polymer nanocomposite is synthesized by the in-situ reduction of the metals on the polymer matrix. The synthesized adsorbent was characterized by the FTIR, SEM-EDX, TGA, BET, and XPS. The adsorbent showed a maximum phosphate adsorption capacity of 221.72 mg/g at pH 3. The experimental data fit well with the Freundlich isotherm and pseudo-second-order kinetics model, indicating a heterogeneous multilayer surface formation and a chemisorption-dominated adsorption process. Density Functional Theory (DFT) and Monte Carlo (MC) calculations revealed high negative adsorption energy due to the chemisorption of phosphate on the adsorbent. Hence, the major interactions such as electrostatic attraction, hydrogen bonding, and inner-sphere complexation of phosphate adsorption and Zr/Fe/CS/Alg hydrogel beads were investigated from the experimental and computational analysis. The negative values of thermodynamic parameters indicated a spontaneous, exothermic, and less random adsorption process. The synthesized adsorbent exhibited excellent selectivity towards phosphate and maintained 73% efficiency after six adsorption/desorption cycles. The Zr/Fe/CS/Alg hydrogel beads reduced the phosphate concentration in real wastewater samples from 19.02 mg/L to 0.985 mg/L, suggesting that these nanocomposite hydrogel beads could be a promising adsorbent for real-world applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004572" target="_blank" >EH22_008/0004572: Quantum materials for applications in sustainable technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Biological Macromolecules

  • ISSN

    0141-8130

  • e-ISSN

    1879-0003

  • Volume of the periodical

    281

  • Issue of the periodical within the volume

    NOV 2024

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    001335753000001

  • EID of the result in the Scopus database

    2-s2.0-85206241747