All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Closure and forbidden pairs for hamiltonicity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F02%3A00073310" target="_blank" >RIV/49777513:23520/02:00073310 - isvavai.cz</a>

  • Alternative codes found

    RIV/49777513:23520/02:00000407

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Closure and forbidden pairs for hamiltonicity

  • Original language description

    It is known that if X,Y is a pair of connected graphs, then, for any 2-connected graph G, G being XY-free implies G is hamiltonian if and only if X is the claw C and Y belongs to a finite list of graphs, one of them being the net N. For any such pair X,Ywe show that the closures of all 2-connected XY-free graphs form a subclass of the class of CN-free graphs, and we fully describe their structure.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2002

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Theory

  • ISSN

    00958956

  • e-ISSN

  • Volume of the periodical

    Vol. 86

  • Issue of the periodical within the volume

    leden

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    331

  • UT code for WoS article

  • EID of the result in the Scopus database