All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Regular clique covers of graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F03%3A00000223" target="_blank" >RIV/49777513:23520/03:00000223 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Regular clique covers of graphs

  • Original language description

    A family of cliques in a graph $G$ is said to be p-regular if any two cliques in the family intersect in exactly $p$ vertices. A graph $G$ is said to have a p-regular k-clique cover if there is a $p$-regular family $cal H$ of k-cliques of $G$ such tha teach edge $G$ belongs to a clique in $cal H$. Such a p-regular k-clique cover is separable if the complete subgraphs of order $p$ that arise as intersections of pairs of distinct cliques of $cal H$ are mutually vertex-disjoint.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LN00A056" target="_blank" >LN00A056: Institute of Theoretical Computer Science (Center of Young Science)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2003

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Australasian Journal of Combinatorics

  • ISSN

    1034-4942

  • e-ISSN

  • Volume of the periodical

    Neuveden

  • Issue of the periodical within the volume

  • Country of publishing house

    AU - AUSTRALIA

  • Number of pages

    10

  • Pages from-to

    307-316

  • UT code for WoS article

  • EID of the result in the Scopus database