Signature verification using self-organizing feature map
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F03%3A00000237" target="_blank" >RIV/49777513:23520/03:00000237 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Signature verification using self-organizing feature map
Original language description
In this paper we describe the use of the SOFM neural network model for signature verification. The biometric data of all signatures were acquired by a special digital data acquisition pen and fast wavelet transformation was used for feature extraction. The part of authentic signature data was used for training the SOFM signature verifer. The architecture of the verifer and achieved results are discussed here and ideas for future research are also suggested.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CIRAS 2003
ISBN
—
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
1-4
Publisher name
National University of Singapore
Place of publication
Singapore
Event location
Singapore
Event date
Dec 15, 2003
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—