Distance-based Pruning for Gaussian Sum Method in Non-Gaussian System State Estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F05%3A00000466" target="_blank" >RIV/49777513:23520/05:00000466 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Distance-based Pruning for Gaussian Sum Method in Non-Gaussian System State Estimation
Original language description
State estimation of the non-Gaussian systems by the Gaus- sian sum method is treated. The distance-based pruning technique is designed for an approximation of the filtering probability density function given by a weighted sum of Gaussian distributions. The technique measures signif- icance of each term of the sum using the Lissack-Fu dis- tance between the approximate filtering probability den- sity function and the filtering probability density function and prunes the insignificant terms. The paper also pro- poses a thrifty implementation of the developed technique. The distance-based pruning technique provides high ap- proximation quality in comparison with other approxima- tion techniques, moreover it achieves low computational demands as it is illustrated in a numerical example.
Czech name
Prořezávání založené na vzdálenosti pro metodu gaussových směsí v odhadování stavu negaussovských systémů
Czech description
nízských výpočetních nároků jak je ukázáno na př
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0572" target="_blank" >1M0572: Data, algorithms, decision making</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Modelling, identification and control
ISSN
1025-8973
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
—
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
96
UT code for WoS article
—
EID of the result in the Scopus database
—