Hamiltonian cycles in prisms over graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F07%3A00000111" target="_blank" >RIV/49777513:23520/07:00000111 - isvavai.cz</a>
Alternative codes found
RIV/49777513:23520/07:00000112
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hamiltonian cycles in prisms over graphs
Original language description
The prism over a graph G is the Cartesian product of G with the complete graph K2. If G is hamiltonian, then the prism over G is also hamiltonian but the converse does not hold in general. Having a hamiltonian prism is shown to be a good measure how close a graph is to being hamiltonian. In this paper, we examine classical problems on hamiltonicity of graphs in the context of hamiltonian prisms.
Czech name
Hamiltonovské kružnice v hranolech nad grafy
Czech description
Hranol nad grafem G is je kartézský součin G s úplným grafem K2. Je-li G hamiltonovský, pak hranol nad G je také hamiltonovský, ale opak obecně neplatí. Ukazuje se, že vlastnost "mít hamiltonovský hranol" je dobrou mírou toho, jak blízko je graf hamiltonovskému grafu. V článku studujeme klasické problémy hamiltonovských grafů v kontextu hamiltonovských hranolů.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
—
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
249
UT code for WoS article
—
EID of the result in the Scopus database
—