Closure and Hamiltonian - connectivity of claw - free graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F99%3A00039174" target="_blank" >RIV/49777513:23520/99:00039174 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Closure and Hamiltonian - connectivity of claw - free graphs
Original language description
In [3], the closure cl (G) for a claw-free graph G is defined, and it is proved that G is hamiltonian if and only if cl (G) is hamiltonian. On the other hand, there exist infinitely many claw-free graphs G such that G is not hamiltonian-connected (resp.omogeneously traceable) while cl (G) is hamiltonian-connected (resp. homogeneously traceable). In this paper we define a new closure cl_k(G) (k>1) as a generalization of cl(G) and prove the following theorems. (1) A claw-free graph G is hamiltonian-conneted if and only if cl_3(G) is hamiltonian-connected. (2) A claw-free graph G is homogeneously traceable if and only if cl_2(G) is homogeneously traceable. We also discuss the uniqueness of the closure.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
1999
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012365X
e-ISSN
—
Volume of the periodical
Vol.^195
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—