All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nonlinear Fredholm alternative

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F07%3A00000334" target="_blank" >RIV/49777513:23520/07:00000334 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nonlinear Fredholm alternative

  • Original language description

    In the first part of this paper we prove a saddle Fredholm alternative: Let $A: D(A)to H$ be a linear self~adjoint operator with a~kernel $N(A)$. Let $widehat{H},widetilde{H} subset H$ be subspaces of a Hilbert space $H$ and $H=widehat{H}oplus N(A)opluswidetilde{H}$. If there exist $c_3>0, c_4>0$ such that $ (Au,u) le -c_3 |u|^2 quad forall u in D(A)cap widehat{H},$ $(Au,u) ge c_4 |u|^2 quad forall u in D(A)cap widetilde{H},$ then equation $Au=f$ has a solution for every $fin H$ if and only if $(f,v)=0 qquad forall v in N(A),. $ We also prove that the classical Fredholm alternative is a consequence of the saddle Fredholm alternative. In the second part we formulate a nonlinear Fredholm alternative and we prove it using theSaddle Point Theorem. We also show that the saddle Fredholm alternative is a consequence of the Saddle Point Theorem.

  • Czech name

    Nelineární Fredholmova alternativa

  • Czech description

    V první části tohoto článku dokážeme Fredholmovu alternativu pro sedlový operátor. Nechť operátor A: H-> H je lineární, kompaktní, samoadjungovaný s jádrem N(A). Nechť $widehat{H},widetilde{H} subset H$ jsou podprostory a Hilbertova prostoru $H$ a platí $H=widehat{H}oplus N(A)opluswidetilde{H}$. Jestliže existují $c_3>0, c_4>0$ takové, žet $ (Au,u) le -c_3 |u|^2 quad forall u in D(A)cap widehat{H},$ $(Au,u) ge c_4 |u|^2 quad forall u in D(A)cap widetilde{H},$ pak rovnice $Au=f$ má řešení pro každé $fin H$ právě tehdy, když $(f,v)=0 qquad forall v in N(A),. $ Zároveň dokážeme, že klasická Fredholmova alternativa je důsledkem věty o sedlovém bodu. V druhé části formulujeme nelineární Fredholmovu alternativu, kterou dokážeme pom

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Colloquium on Differential and Difference Equations, CDDE 2006

  • ISBN

    978-80-210-4414-2

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    163-170

  • Publisher name

    Masaryk University

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Jan 1, 2007

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article