Numerical modelling of river flow (numerical schemes for one type of nonconservative systems)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F08%3A43914998" target="_blank" >RIV/49777513:23520/08:43914998 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Numerical modelling of river flow (numerical schemes for one type of nonconservative systems)
Original language description
In this paper we propose a new numerical scheme to simulate the river flow in the presence of a variable bottom surface. We use finite volume approach, our method is based on the technique described by D. L. George for shallow water equations. The main goal is to construct the scheme, which is well balanced, ie maintains not only some special steady states but all steady states which can occur. Furthermore this should preserve nonnegativity of some quantities, which are essentially nonnegative from their physical fundamental, for example the cross section or depth. Our scheme can be extended to the second order accuracy. We also present numerical experiments.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Programs and algorithms of numerical mathematics 14, Proceedings of seminar
ISBN
978-80-85823-55-4
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
23-36
Publisher name
Institute of Mathematics, Academy of Sciences of the Czech Republic
Place of publication
Praha
Event location
Dolní Maxov
Event date
Jun 1, 2008
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
000290967400003