High order well-balanced scheme for river flow modeling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915608" target="_blank" >RIV/49777513:23520/12:43915608 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.matcom.2012.05.013" target="_blank" >http://dx.doi.org/10.1016/j.matcom.2012.05.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matcom.2012.05.013" target="_blank" >10.1016/j.matcom.2012.05.013</a>
Alternative languages
Result language
angličtina
Original language name
High order well-balanced scheme for river flow modeling
Original language description
We propose a new numerical scheme based on the finite volumes to simulate the river flow in the presence of a variable bottom surface. Our approach is based on the Riemann solver designed for the augmented quasilinear homogeneous formulation. The schemehas general semidiscrete wave-propagation form and can be extended to an arbitrary high order accuracy. The main goal is to construct the scheme, which is well-balanced, i.e. maintains not only some special steady states, but all steady states which canoccur.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and Computers in Simulation
ISSN
0378-4754
e-ISSN
—
Volume of the periodical
82
Issue of the periodical within the volume
10
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
"1773?1787"
UT code for WoS article
000308519900005
EID of the result in the Scopus database
—