All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On a maximum principle for weak solutions for some quasi-linear elliptic equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00501669" target="_blank" >RIV/49777513:23520/09:00501669 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On a maximum principle for weak solutions for some quasi-linear elliptic equations

  • Original language description

    We generalize maximum principle for some class of quasilinear elliptic equations. We concentrate on the Dirichlet boundary data but the method can be extended to other types of boundary conditions as well. In particular, the Neumann and Robin boundary conditions can be handled similarly.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Mathematics Letters

  • ISSN

    0893-9659

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    4

  • Pages from-to

  • UT code for WoS article

    000073313900002

  • EID of the result in the Scopus database