Local in time existence of solution of the Navier-Stokes equations with various types of boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00352078" target="_blank" >RIV/68407700:21110/21:00352078 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s41808-021-00109-w" target="_blank" >https://doi.org/10.1007/s41808-021-00109-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s41808-021-00109-w" target="_blank" >10.1007/s41808-021-00109-w</a>
Alternative languages
Result language
angličtina
Original language name
Local in time existence of solution of the Navier-Stokes equations with various types of boundary conditions
Original language description
In this paper we deal with the two-dimensional Navier-Stokes system with three types of boundary conditions, including the so called “do-nothing” boundary condition. We prove the local in time existence and uniqueness of a solution for the initial velocity, which can belong to a class of functions that can be at least a little stronger than L2(Ω).
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of elliptic and parabolic equations
ISSN
2296-9020
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
297-310
UT code for WoS article
000679754900001
EID of the result in the Scopus database
2-s2.0-85111581297