A Comparison of Acoustic Models Based on Neural Networks and Gaussian Mixtures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00502102" target="_blank" >RIV/49777513:23520/09:00502102 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Comparison of Acoustic Models Based on Neural Networks and Gaussian Mixtures
Original language description
This article tries to comapre the performance of neural network and Gaussian mixture acoustic modesl (GMMs). Since the speed-accuracy trade-off is not only dependent on the acoustic model itself, but also on the settings of decoder parameters, we have suggested a comparisonbased on egual number of active states during the decoding search. Statistical significance measures are also discussed and a new method for confidence interval computation is introduced.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/2C06009" target="_blank" >2C06009: Complex knowledge base tools for natural language communication with the semantic web</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Text, Speech and Dialogue
ISBN
978-3-642-04207-2
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
Springer
Place of publication
Berlin
Event location
Plzeň
Event date
Sep 17, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000270445700039