Evaluation of Automatic Speaker Recognition Approaches
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00502311" target="_blank" >RIV/49777513:23520/09:00502311 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Evaluation of Automatic Speaker Recognition Approaches
Original language description
his paper deals with automatic speaker recognition in Czech. The main goal is to evaluate and compare several parametrization/classification methods. We further study the impact of varying sizes of training corpus and test sentence on the recognition accuracy for different parametrizations and classifiers. We experimentally found that the recognition is still very accurate for test utterances as short as two seconds. The best recognition accuracy is obtained with LPCEPSTRA/LPREFC parametrizations and HMM classifier.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/2C06009" target="_blank" >2C06009: Complex knowledge base tools for natural language communication with the semantic web</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů