All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Implementation of a Modular Growing When Required Neural Gas Architecture for Recognition of Falls

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00306982" target="_blank" >RIV/68407700:21230/16:00306982 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-319-46687-3_58" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-46687-3_58</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-46687-3_58" target="_blank" >10.1007/978-3-319-46687-3_58</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Implementation of a Modular Growing When Required Neural Gas Architecture for Recognition of Falls

  • Original language description

    In this paper we aim for the replication of a state of the art architecture for recognition of human actions using skeleton poses obtained from a depth sensor. We review the usefulness of accurate human action recognition in the field of robotic elderly care, focusing on fall detection. We attempt fall recognition using a chained Growing When Required neural gas classifier that is fed only skeleton joints data. We test this architecture against Recurrent SOMs (RSOMs) to classify the TST Fall detection database ver. 2, a specialised dataset for fall sequences. We also introduce a simplified mathematical model of falls for easier and faster bench-testing of classification algorithms for fall detection. The outcome of classifying falls from our mathematical model was successful with an accuracy of 97.12±1.65% and from the TST Fall detection database ver. 2 with an accuracy of 90.2±2.68% when a filter was added.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    23rd International Conference, ICONIP 2016, Kyoto, Japan, October 16–21, 2016, Proceedings, Part I

  • ISBN

    978-3-319-46686-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    526-534

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Kyoto

  • Event date

    Oct 16, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000389805900058