On variational eigenvalues of the p-Laplacian which are not of Ljusternik-Schnirelmann type
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503407" target="_blank" >RIV/49777513:23520/10:00503407 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On variational eigenvalues of the p-Laplacian which are not of Ljusternik-Schnirelmann type
Original language description
In this paper we demonstrate the fact that the famous Ljusternik-Schnirelmann characterization of some eigenvalues of nonlinear elliptic problems (by a minimax formula) has a global variational character. Indeed, we show that, for some homogeneous quasilinear elliptic eigenvalue problems, there are variational eigenvalues other than those of the Ljusternik-Schnirelmann type. In contrast, these eigenvalues have a local variational character. Such a phenomenon does not occur in typical linear elliptic eigenvalue problems, owing to the Courant-Fischer theorem which is the linear analogue and predecessor of the Ljusternik-Schnirelmann theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/MEB100902" target="_blank" >MEB100902: The Cahn-Hilliard and bi-stable equations in the microscopic theory of phase separation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
ISSN
0024-6107
e-ISSN
—
Volume of the periodical
81
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
25
Pages from-to
—
UT code for WoS article
000278819000007
EID of the result in the Scopus database
—