Hermite interpolation by hypocycloids and epicycloids with rational offsets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503472" target="_blank" >RIV/49777513:23520/10:00503472 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hermite interpolation by hypocycloids and epicycloids with rational offsets
Original language description
We show that all rational hypocycloids and epicycloids are curves with Pythagorean normals and thus have rational offsets. Then, exploiting the convolution properties and (implicit) support function representation of these curves, we design an efficientalgorithm for G1 Hermite interpolation with their arcs. We show that for all regular data, there is a unique interpolating hypocycloidal or epicycloidal arc of the given canonical type.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Aided Geometric Design
ISSN
0167-8396
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
5
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—