G2 Hermite Interpolation with Curves Represented by Multi-valued Trigonometric Support Functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43898297" target="_blank" >RIV/49777513:23520/12:43898297 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-27413-8_9" target="_blank" >http://dx.doi.org/10.1007/978-3-642-27413-8_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-27413-8_9" target="_blank" >10.1007/978-3-642-27413-8_9</a>
Alternative languages
Result language
angličtina
Original language name
G2 Hermite Interpolation with Curves Represented by Multi-valued Trigonometric Support Functions
Original language description
It was recently proved in that all rational hypocycloids and epicycloids are Pythagorean hodograph curves, i.e., rational curves with rational offsets. In this paper, we extend the discussion to a more general class of curves represented by trigonometricpolynomial support functions. We show that these curves are offsets to translated convolutions of scaled and rotated hypocycloids and epicycloids. Using this result, we formulate a new and very simple G2 Hermite interpolation algorithm based on solvinga small system of linear equations. The efficiency of the designed method is then presented on several examples. In particular, we show how to approximate general trochoids, which, as we prove, are not Pythagorean hodograph curves in general.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
2012
Issue of the periodical within the volume
6920
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
142-156
UT code for WoS article
—
EID of the result in the Scopus database
—