The Fučík spectra for multi-point boundary-value problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503603" target="_blank" >RIV/49777513:23520/10:00503603 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Fučík spectra for multi-point boundary-value problems
Original language description
We study the structure of the Fučík spectra for the linear multi-point differential operators. We introduce a variational approach in order to obtain a robust and global algorithm which is suitable for the exploration of unknown Fučík spectrum structure.We apply our approach in the case of the four-point selfadjoint differential operator of the fourth order which is closely connected to the nonlinear model of a suspension bridge with two towers. Moreover, we reconstruct the Fučík spectra in the case offour-point non-selfadjoint ordinary differential operators of the second order in order to demonstrate their non-trivial and interesting structure.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ME09109" target="_blank" >ME09109: Boundary value problems with jumping nonlinearities: Fučík spectrum of continuous and discrete operators</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Differential Equations
ISSN
1072-6691
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
Conf. 18
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—