All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Quasilinear Eigenvalue Problem with Robin Conditions on the Non-Smooth Domain of Finite Measure

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503641" target="_blank" >RIV/49777513:23520/10:00503641 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Quasilinear Eigenvalue Problem with Robin Conditions on the Non-Smooth Domain of Finite Measure

  • Original language description

    In this paper, we consider a nonlinear eigenvalue problem involving the p-Laplacian with Robin boundary conditions on a domain of finite measure. We show the existence, simplicity and isolation of principal eigenvalue and regularity results for the corresponding eigenfunction. Furthermore we establish the link between the Dirichlet and Neumann problems by means of the Robin boundary conditions with variable parameter.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/MEB100902" target="_blank" >MEB100902: The Cahn-Hilliard and bi-stable equations in the microscopic theory of phase separation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Zeitschrift für Analysis und ihre Anwendungen

  • ISSN

    0232-2064

  • e-ISSN

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database