Barycentric Interpolation and Mappings on Smooth Convex Domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503656" target="_blank" >RIV/49777513:23520/10:00503656 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Barycentric Interpolation and Mappings on Smooth Convex Domains
Original language description
In a recent paper, Warren, Schaefer, Hirani, and Desbrun proposed a simple method of interpolating a function defined on the boundary of a smooth convex domain, using an integral kernel with properties similar to those of barycentric coordinates on simplexes. When applied to vector-valued data, the interpolation can map one convex region into another, with various potential applications in computer graphics, such as curve and image deformation. In this paper we establish some basic mathematical properties of barycentric kernels in general, including the interpolation property and a formula for the Jacobian of the mappings they generate. We then use this formula to prove the injectivity of the mapping of Warren et al.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 14th ACM Symposium on Solid and Physical Modeling 2010
ISBN
978-1-60558-984-8
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
ACM
Place of publication
New York
Event location
Haifa, Izrael
Event date
Jan 1, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—