Structural properties of graphs of diameter 2 and defect 2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00504120" target="_blank" >RIV/49777513:23520/10:00504120 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Structural properties of graphs of diameter 2 and defect 2
Original language description
Using eigenvalue analysis, it was shown by Erdos et al. that with the exception of the cycle on 4 vertices, there are no graphs of diameter 2, maximum degree d and defect 1. In this paper we prove a number of structural properties of regular graphs of diameter 2, maximum degree d and order two less than the Moore bound.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
AKCE International Journal of Graphs and Combinatorics
ISSN
0972-8600
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
1
Country of publishing house
IN - INDIA
Number of pages
15
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—