Complete catalogue of graphs of maximum degree 3 and defect at most 4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00503061" target="_blank" >RIV/49777513:23520/09:00503061 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Complete catalogue of graphs of maximum degree 3 and defect at most 4
Original language description
We consider graphs of maximum degree 3, diameter D at least 2 and at most 4 vertices less than the Moore bound. We prove the non-existence of (3,D,-4)-graphs for D at least 5, completing in this way the catalogue of (3,D,-e)-graphs with D at least 2 ande at most 4. Our results also give an improvement to the upper bound on the largest possible number of vertices in a graph of maximum degree 3 and diameter D.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Volume of the periodical
157
Issue of the periodical within the volume
13
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—