A Priori and A Posteriori Machine Learning and Nonlinear Artificial Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00504210" target="_blank" >RIV/49777513:23520/10:00504210 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Priori and A Posteriori Machine Learning and Nonlinear Artificial Neural Networks
Original language description
The main idea of a priori machine learning is to apply a machine learning method on a machine learning problem itself. We call it ``a priori'' because the processed data set does not originate from any measurement or other observation. Machine learning which deals with any observation is called ``posterior''. The paper describes how posterior machine learning can be modified by a priori machine learning. A priori and posterior machine learning algorithms are proposed for artificial neural network training and are tested in the task of audio-visual phoneme classification.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Artificial Intelligence
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
6231
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—