All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inference of cosmic-ray source properties by conditional invertible neural networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F22%3A00564461" target="_blank" >RIV/68378271:_____/22:00564461 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1140/epjc/s10052-022-10138-x" target="_blank" >https://doi.org/10.1140/epjc/s10052-022-10138-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1140/epjc/s10052-022-10138-x" target="_blank" >10.1140/epjc/s10052-022-10138-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inference of cosmic-ray source properties by conditional invertible neural networks

  • Original language description

    The inference of physical parameters from measured distributions constitutes a core task in physics data analyses. Among recent deep learning methods, so-called conditional invertible neural networks provide an elegant approach owing to their probability-preserving bijective mapping properties. They enable training the parameter-observation correspondence in one mapping direction and evaluating the parameter posterior distributions in the reverse direction. Here, we study the inference of cosmic-ray source properties from cosmic-ray observations on Earth using extensive astrophysical simulations. We compare the performance of conditional invertible neural networks (cINNs) with the frequently used Markov Chain Monte Carlo (MCMC) method. While cINNs are trained to directly predict the parameters' posterior distributions, the MCMC method extracts the posterior distributions through a likelihood function that matches simulations with observations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Physical Journal C

  • ISSN

    1434-6044

  • e-ISSN

    1434-6052

  • Volume of the periodical

    82

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    10

  • Pages from-to

    171

  • UT code for WoS article

    000760965400006

  • EID of the result in the Scopus database

    2-s2.0-85125497014