Equipartite polytopes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A43898267" target="_blank" >RIV/49777513:23520/10:43898267 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11856-010-0080-3" target="_blank" >http://dx.doi.org/10.1007/s11856-010-0080-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-010-0080-3" target="_blank" >10.1007/s11856-010-0080-3</a>
Alternative languages
Result language
angličtina
Original language name
Equipartite polytopes
Original language description
A polytope P with 2n vertices is called equipartite if for any partition of its vertex set into two equal-size sets V1 and V2, there is an isometry of the polytope P that maps V1 onto V2. We prove that an equipartite polytope in R^d can have at most 2d+2vertices. We show that this bound is sharp and identify all known equipartite polytopes in R^d. We conjecture that the list is complete.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Volume of the periodical
179
Issue of the periodical within the volume
1
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
18
Pages from-to
235-252
UT code for WoS article
—
EID of the result in the Scopus database
—